Evaluation of the truebeam machine performance check (MPC) geometric checks for daily IGRT geometric accuracy quality assurance
نویسندگان
چکیده
Machine Performance Check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the performance of the MPC geometric tests relevant to OBI/CBCT IGRT geometric accuracy. This included evaluation of the MPC isocenter and couch tests. Evaluation was performed by comparing MPC to QA tests performed routinely in the department over a 4-month period. The MPC isocenter tests were compared against an in-house developed Winston-Lutz test and the couch compared against routine mechanical QA type procedures. In all cases the results from the routine QA procedure was presented in a form directly comparable to MPC to allow a like-to-like comparison. The sensitivity of MPC was also tested by deliberately miscalibrating the appropriate linac parameter. The MPC isocenter size and MPC kV imager offset were found to agree with Winston-Lutz to within 0.2 mm and 0.22 mm, respectively. The MPC couch tests agreed with routine QA to within 0.12 mm and 0.15°. The MPC isocenter size and kV imager offset parameters were found to be affected by a change in beam focal spot position with the kV imager offset more sensitive. The MPC couch tests were all unaffected by an offset in the couch calibration but the three axes that utilized two point calibrations were sensitive to a miscalibration of the size in the span of the calibration. All MPC tests were unaffected by a deliberate misalignment of the MPC phantom and roll of the order of one degree.
منابع مشابه
Evaluation of the TrueBeam machine performance check (MPC) beam constancy checks for flattened and flattening filter‐free (FFF) photon beams
Machine Performance Check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the MPC beam performance tests against current daily quality assurance (QA) methods, to compare MPC performance against more accurate monthly QA tests and to test the sensitivity of MPC to changes in beam...
متن کاملEvaluation of the Machine Performance Check application for TrueBeam Linac
BACKGROUND Machine Performance Check (MPC) is an application to verify geometry and beam performances of TrueBeam Linacs, through automated checks based on their kV-MV imaging systems. In this study, preliminary tests with MPC were analyzed using all photon beam energies of our TrueBeam, comparing whenever possible with external independent checks. METHODS Data acquisition comprises a series ...
متن کاملEvaluation of the truebeam machine performance check (MPC): mechanical and collimation checks
Machine performance check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the performance of the MPC geometric tests relevant to beam collimation (MLC and jaws) and mechanical systems (gantry and collimator). Evaluation was performed by comparing MPC to QA tests performed routi...
متن کاملEvaluation of the performance of parallel-hole collimator for high resolution small animal SPECT: A Monte Carlo study
Introduction: Image quality and accuracy of in vivo activity quantification in SPECT are affected by collimator penetration and scatter components, especially in high energy imaging. These phenomena highly depend on the collimator characteristic and photon energy. The presence of penetrated and scattered photons from collimator in SPECT images degrades spatial resolution, contr...
متن کاملA multipurpose quality assurance phantom for the small animal radiation research platform (SARRP).
In this work, the suitability and performance of a mouse-size MOSFET (Mousefet) phantom is investigated for routine quality assurance (QA) of the small animal radiation research platform (SARRP). This Mousefet phantom is a simple construction consisting of five micro-MOSFETS custom integrated in a quincunx pattern within a tissue-equivalent phantom, allowing repeat/multiple QA tasks to be quick...
متن کامل